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Abstract. We find the spectrum of boundary bound states for the sine–Gordon model with
Dirichlet boundary conditions, closing the bootstrap and providing a complete description of all
the poles in the boundary reflection factors. The boundary Coleman–Thun mechanism plays an
important role in the analysis. Two basic lemmas are introduced which should hold for any (1 + 1)-
dimensional boundary field theory, allowing the general method to be applied to other models.

1. Introduction

Integrable quantum field theories in two dimensions can be restricted from the whole line by
certain boundary conditions while still preserving their integrability [1]. As well as being
of theoretical interest, these models have interesting physical applications, for example, to
impurity problems in an interacting one-dimensional (1D) electron gas [2] or edge excitations
in fractional quantum Hall states [3, 4]. (A recent review can be found in [5].)

One such theory is the sine–Gordon model, which has the bulk action

ASG =
∫ ∞

−∞
dx

∫ ∞

−∞
dt

[
1
2 (∂µϕ)2 − m2

0

β2
(cos(βϕ) − 1)

]
(1)

on the full line, where ϕ(x, t) is a scalar field and β is a dimensionless coupling constant. It was
argued in [1] that this could be restricted to the half-line x ∈ (−∞, 0], while still preserving
integrability by adding a ‘boundary action’ term

−
∫ ∞

−∞
dt M cos

[
1
2 β(ϕB − ϕ0)

]
(2)

where M and ϕ0 are free parameters, and ϕB(t) = ϕ(x, t)|x=0. In addition to the usual bulk
bound states, in general this also presents us with a complicated spectrum of boundary bound
states. This aspect was mentioned briefly in [1, 6], and investigated in more detail in [7].
However, in none of these works was a full explanation of all poles achieved. In this paper we
return to the problem, and find that the full story appears to involve a much richer structure
of boundary bound states than has previously been suggested. An important feature of our
analysis, not taken into account in the earlier works, is the so-called boundary Coleman–Thun
mechanism [8]. After a brief description of the boundary sine–Gordon model in section 2, this
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mechanism is reviewed in section 3. In the course of the section we also develop a couple of
useful lemmas, which simplify the subsequent discussions considerably.

We will restrict ourselves to the case of Dirichlet boundary conditions, which simply fixes
the value of the field at the boundary to ϕ(x = 0, t) = ϕ0 for all time. This corresponds to
taking M → ∞ above. After an initial discussion in section 4, in section 5 we give a complete
analysis of a particular example. This serves to show many of the features of the bound state
structure, and is a useful warm-up to the discussion of the general case in section 6. Finally,
we gather together our conclusions in section 7.

2. The reflection factors

2.1. The theory in the bulk

We begin with a summary of the theory in the bulk, mainly to set up the notation. Further
details can be found in the review [9]. The bulk sine–Gordon model is known to be integrable at
both the classical and the quantum levels [10]. The theory has an infinite number of degenerate
vacua, with the discrete symmetry ϕ → ϕ + 2π

β
m, with m ∈ Z. The particle spectrum consists

of a soliton (A) and an antisoliton (A)—both of which interpolate between neighbouring
vacua—and a number of soliton–antisoliton bound states (‘breathers’) Bn, n = 1, 2, . . . , < λ,
where

λ = 8π

β2
− 1. (3)

The soliton (antisoliton) has a topological charge of 1 (−1), while the breathers are neutral.
The soliton and antisoliton both have the same mass, which we shall call ms , while the mass
of the nth breather Bn is mn = 2ms sin

(
nπ
2λ

)
.

The integrability of the theory means that particle production is forbidden, and all
scattering is factorizable—the amplitude for any scattering process can be reduced to a
product of two-particle amplitudes. In addition, charge, parity and time-reversal (C, P and
T ) symmetry holds for the bulk theory. If we denote the soliton S-matrix as Sab

cd (θ) for
rapidity θ , with a, b, c, d taking the value + (−) if the particle is a soliton (antisoliton), the
non-zero scattering amplitudes are S++

++(θ) = S−−
−−(θ) = a(θ) (soliton–soliton or antisoliton–

antisoliton scattering), S+−
+−(θ) = S−+

−+(θ) = b(θ) (soliton–antisoliton transmission), and
S+−

−+(θ) = S−+
+−(θ) = c(θ) (soliton–antisoliton reflection). Explicitly,

a(θ) = sin[λ(π − u)]ρ(u)

b(θ) = sin(λu)ρ(u) (4)

c(θ) = sin(λπ)ρ(u)

where u = −iθ and

ρ(u) = 1

sin(λ(u − π))

∞∏
l=1

[
! ((2l − 2)λ − λu/π) ! (1 + 2lλ − λu/π)

! ((2l − 1)λ − λu/π) ! (1 + (2l − 1)λ − λu/π)

/
(u → −u)

]
.

(5)

As pointed out in [11], this factor can also be written in terms of Barnes’ diperiodic sine
function S2(x|ω1, ω2) [12, 13]. This is a meromorphic function parametrized by the pair of
‘quasiperiods’ (ω1, ω2), with poles and zeros at the following points:

poles: x = n1 ω1 + n2 ω2 (n1, n2 = 1, 2, . . .) (6)

zeros: x = m1 ω1 + m2 ω2 (m1, m2 = 0, −1, −2 . . .). (7)
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In terms of this function,

ρ(u) = 1

sin(λ(u − π))

S2 (π − u |π/λ, 2π ) S2 (u |π/λ, 2π )

S2 (π + u |π/λ, 2π ) S2 (−u |π/λ, 2π )
. (8)

The amplitudes b(θ) and c(θ) have simple poles at θ = i
(
π − nπ

λ

)
, n = 1, 2, . . . , < λ,

which can be attributed to the creation of Bn in the forward channel. There are also poles
at θ = iπn

λ
in a(θ) and b(θ) corresponding to the same process in the cross channel. Since

all poles that we will be discussing, both in the bulk and at the boundary, occur at imaginary
rapidities, from now on we will use the variable u = −iθ and always work in terms of purely
imaginary rapidities.

2.2. Solitonic ground state reflection factors

The general integral boundary condition found in [1] does not conserve topological charge, so
in principle four solitonic boundary reflection factors need to be introduced, as well as a set of
breather reflection factors. The solitonic factors which we quote here were given in [1], while
breather factors can be found in [6]. The reflection factors for the sine–Gordon solitons off
the boundary ground state will be denoted by P±(u) (a soliton or antisoliton, incident on the
boundary, is reflected back unchanged) and Q±(u) (a soliton is reflected back as an antisoliton,
or vice versa). In the Dirichlet case, topological charge is conserved and so Q± = 0. The
remaining factors can be written as†

P ±(u) = R0(u)

∞∏
l=1

[
!

(
1
2 + 2lλ ± ξ/π + λu/π

)
!

(
1
2 + (2l − 2)λ ∓ ξ/π + λu/π

)
!

(
1
2 + (2l − 1)λ + ξ/π + λu/π

)
!

(
1
2 + (2l − 1)λ − ξ/π + λu/π

)
/

(u → −u)

]
(9)

where

R0(u) =
∞∏

k=1

[
! (1 + λ(4k − 4) − 2λu/π) ! (4λk − 2λu/π)

! (λ(4k − 3) − 2λu/π) ! (1 + λ(4k − 1) − 2λu/π)

/
(u → −u)

]
(10)

and ξ = 4πϕ0

β
. These factors can again be written in terms of Barnes’ multiperiodic functions,

as

P ±(u) = R0(u)
S2 (π/2λ ∓ ξ/λ + π + u |π/λ, 2π ) S2 (π/2λ ∓ ξ/λ − u |π/λ, 2π )

S2 (π/2λ ∓ ξ/λ + π − u |π/λ, 2π ) S2 (π/2λ ∓ ξ/λ + u |π/λ, 2π )
(11)

with

R0(u) = S2 (π/2 − u |π/2λ, 2π ) S2 (π/2λ + u |π/2λ, 2π )

S2 (π/2 + u |π/2λ, 2π ) S2 (π/2λ − u |π/2λ, 2π )
. (12)

The theory is invariant under ϕ0 → ϕ0 + 2π
β

, and also under the simultaneous transformations
ϕ0 → −ϕ0 and soliton → antisoliton. Introducing the boundary breaks the degeneracy of
the bulk vacua, and selects the lower line in figure 1 as the lowest-energy state, with the upper
line as the first excited state. Continuing ϕ0 through π

β
thus simply interchanges the roles of

these two states, and selects the upper one as the ground state.
In light of this, we are free to choose ξ to be in the interval

0 < ξ <
4π2

β2
= π(λ + 1)

2
. (13)

† Note that there is a small error in Ghoshal and Zamolodchikov’s formula (5.23) for σ , where the denominator
should read )(x, π/2))(−x, π/2))(x, −π/2))(−x, −π/2). We are grateful to Subir Ghoshal for informing us of
the corrected version.
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Figure 1. Vacuum structure.

Figure 2. Breather bootstrap.

Note that the topological charge of the ground state is no longer zero, as in the bulk model, but

q = β

2π

∫ 0

−∞
dx

∂

∂x
ϕ(x, t) = β

2π
[ϕ(0, t) − ϕ(−∞, t)] = βϕ0

2π
(14)

with the charge of the first excited state being 1− βϕ0

2π
. We will find that all the boundary states

have one of these charges, so, for convenience, we shall designate them simply as 0 and 1,
respectively.

2.3. Breather ground state reflection factors

For the breather sector, Ghoshal [6] obtained the relevant reflection factors, Rn
|0〉(u) for breather

n and boundary ground state |0〉, from the solitonic reflection factors using the general boundary
bootstrap equation [1, 14]

f n
i1i2

R
i1
j1|x〉

(
u +

un

2

)
S

i2j1
j2f1

(2u)R
j2
f2|x〉

(
u − un

2

)
= f n

f1f2
Rn

|x〉(u) (15)

where un = π − nπ
λ

, and the Ra
b|x〉(u) are the solitonic reflection factors, such that R+

−|x〉(u) is
the factor for a soliton to be reflected back as an antisoliton and so on. The f n

ab are the bulk
vertices for the creation of breather n from (anti)solitons a and b. These obey f n

+− = (−1)nf n
−+.

The bootstrap is illustrated in figure 2.
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In the Dirichlet case, with topological charge conserved, the bootstrap equation reduces
to

f n
i1i2

P
i1
|x〉

(
u +

un

2

)
S

i2i1
f2f1

(2u)P
f2
|x〉

(
u − un

2

)
= f n

f1f2
Rn

|x〉(u). (16)

Ghoshal found that, for the boundary ground state, the breather reflection factors were

Rn
|0〉(u) = R

(n)
0 (u)R

(n)
1 (u) (17)

where

R
(n)
0 (u) =

1
2 (n/2λ + 1)(
n/2λ + 3

2

) n−1∏
l=1

(l/2λ) (l/2λ + 1)(
l/2λ + 3

2

)2 (18)

and

R
(n)
1 (u) =

(n−1)/2∏
l=(1−n)/2

(
ξ/λπ − 1

2 + l/2λ
)

(
ξ/λπ + 1

2 + l/2λ
) . (19)

This makes use of the notation

(x) = sinh (θ/2 + iπx/2)

sinh (θ/2 − iπx/2)
(20)

which will also be helpful later.

3. The boundary Coleman–Thun mechanism

In this section we will discuss some general features of the pole analysis of boundary reflection
factors, in preparation for the specific case of the sine–Gordon model. The main aim is to
establish a couple of lemmas which will simplify the subsequent discussion. We begin by
recalling the story in the bulk.

An initially mysterious feature of the sine–Gordon S-matrix was the presence of a number
of double poles in the breather scattering amplitudes. At first it was thought that these might
be related to the integrability of the model, and it was only with the work of Coleman and
Thun [15] that it was realized that they had a ‘prosaic’ origin as anomalous threshold poles, and
could be explained using standard field-theoretical ideas. Studies of affine Toda field theories
[16–19] returned to this topic, and it proved possible, in certain cases, to confirm the scenario
of Coleman and Thun through standard, albeit elaborate, perturbative calculations [18].

One element of Coleman and Thun’s analysis was the observation that in 1+1 dimensions
sometimes even simple poles have complicated explanations, as anomalous thresholds. This
breaks the usual association of every simple S-matrix pole with a bound state in either the
forward or the crossed channel. The same mechanism is at work in the S-matrices of non-
self-dual affine Toda field theories [19], as was pointed out in [20]. This material is reviewed
at greater length in [21]; here, we are more interested in what can occur when a boundary
is also involved. This was discussed in [8] via a particularly simple example, the boundary
scaling Lee–Yang model, for which the spectrum of boundary bound states had previously
been found by other means [22]. It was found that the Coleman–Thun mechanism did indeed
play a role, there being a number of simple poles in the reflection factors at locations which did
not correspond to boundary bound states, but which rather could be explained through on-shell
(anomalous threshold) diagrams for multiple rescattering processes involving the boundary.
Further work, applying the method to affine Toda field theories, can be found in [23]. It is
important to note that, both in the bulk and at the boundary, an anomalous threshold diagram
would normally lead to a pole of order greater than one. To match a simple pole, this order
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must be reduced somehow, and in [8, 23] this was always achieved by one or more ‘internal’
reflection factors having zeros exactly at the point where the diagram went on-shell. Here, we
will see both this mechanism of order reduction (which mimics that seen in bulk affine Toda
theories [20]) and cancellations between different diagrams, i.e. closer to the original situation
discussed by Coleman and Thun [15].

One difficulty, which is especially serious in cases when the spectrum of boundary bound
states is not known a priori, is the greatly increased complexity of the on-shell diagrams once a
boundary is involved. This makes it hard to be sure that any given pole really does correspond
to a new boundary bound state. In the bulk, a simple geometrical argument shows that poles
in the S-matrix elements of the lightest particle can never be explained by a Coleman–Thun
mechanism, and so must always be due to bound states [17]. We wish to find analogous
criteria for the boundary situation. To this end, the following two lemmas turn out to be useful.
Suppose the incoming particle is of type a, and that its reflection factor has a simple pole at
θ = iu.

Lemma 1. Let Ua = minb,c

(
π − Uc

ab

)
. If u < Ua , then the pole at iu cannot be explained

by a Coleman–Thun mechanism, and so must correspond to the binding of particle a to the
boundary, either before or after crossing the outgoing particle.

Figure 3. General process with incoming particles
uncrossed.

Figure 4. General process with incoming particles
crossed.

Proof. All processes must take the form shown in figure 3 or the crossed version shown in
figure 4. Conservation of momentum demands that all rescattering must take place within the
hatched region, which is drawn from the furthest point from the boundary where either the
incoming or outgoing particle undergoes any interaction. If neither particle decays, we simply
have a diagram of the form of figure 7(b) or figure 7(c). Otherwise, momentum conservation
requires that neither product of the particle which decays on the boundary of the hatched region
has a trajectory which takes it outside that region. Fixing the notation by figure 5 (with angles
Ub

ac and Uc
ab defined correspondingly), this reduces to demanding π − Uc

ab � u � Ub
ac. If we

introduce Ua then we must have Ua � u � π − Ua (i.e. just u � Ua , as u � π
2 ). Thus, if

u < Ua , then the only possible explanations for the pole are figures 7(b) and 7(c). �

Lemma 2. If the boundary is in its ground state, then lemma 1 can be strengthened, requiring
that the incoming particle bind to the boundary if u is outside the range Ua < u < π

2 − Ua .
In addition, if minb,c Ua

bc > π
2 , the incoming particle must always bind to the boundary.
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Figure 5. Decay process. Figure 6. General ground state process.

Proof. With the boundary in its ground state, all rescattering must take place in the area shown
in figure 6. Reasoning as before but demanding that both product particles be emitted into this
more restricted region, we find π − Uc

ab � u � Ub
ac − π

2 , or Ua � u � π
2 − Ua . In addition,

both particles b, c must be emitted into an angle of π
2 , so Ua

bc < π
2 for at least one pair of

particles b, c. If either of these conditions are violated, then the incoming particle must bind
to the boundary. �

These two results, between them, will allow the spectrum of the sine–Gordon model
with Dirichlet boundary conditions to be fixed completely, provided it is assumed that no
pole corresponds to the creation of a boundary state if it has an alternative (Coleman–Thun)
explanation.

For the problem under discussion, writing the rapidity bounds Ua as U+(−) for the soliton
(antisoliton) and as Un for the Bn, we have

U± = π

2
− nmaxπ

2λ

Un = π/2λ n 
= nmax (21)

Unmax = π

2
− nmaxπ

2λ

where Bnmax is the highest-numbered breather present in the model. To derive these results,
note that a soliton (antisoliton) can only decay into an antisoliton (soliton) and a breather
(with vertex U±

∓n = π
2 + nπ

2λ
). A breather can either decay into a soliton–antisoliton pair

(Un
+− = π − nπ

λ
) or a pair of breathers (Ul

nm = π − lπ
2λ

with n = m + l or m = n + l, or
Ul

nm = π(n+m)

2λ
with l = n + m).

These restrictions can also be combined to produce a stronger version of lemma 1 when
the incoming particle is a soliton. If U+ < u < π

λ
, decay within the hatched region is only

possible into the topmost breather and an antisoliton. One or other of these particles will be
heading away from the centre of the diagram. If the process in uncrossed, as in figure 3, the
breather will be created heading towards the centre of the diagram, and the antisoliton away
(we are being somewhat cavalier with the direction of time; this should be considered as a
purely geometric argument). The antisoliton must itself obey our lemmas; if in any further
decay before it reaches the boundary one of the decay products is heading away from the
boundary, then there would be no way to close the diagram while conserving momentum at
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every vertex. For a crossed process (figure 4) the breather is the outermost particle, and is
again restricted in its decay by our lemmas for the same reason.

The antisoliton created by the uncrossed process heads for the boundary with a rapidity
less than U− and so, by lemma 1, may not decay. By the same token, the breather of the
crossed process cannot decay either, so, if the initial soliton is not to form a bound state, the
only possible alternative processes are figures B2 and B3. If these are found not to occur (for
example, if the necessary boundary vertices are not present) then the pole must correspond to
a bound state for any u < π

λ
.

4. Initial pole analysis

4.1. Solitonic ground state factors

The R0(u) factor is insensitive to the boundary parameters, and so all of its poles should be
explicable in terms of the bulk. The only poles are at u = Nπ

2λ
, where N = 1, 2, 3, . . . , with no

zeros. These can be explained by the creation of a breather which is incident perpendicularly
on the boundary, as shown in figure 7(a). Here, as in all subsequent diagrams, the time axis
points up the page, and the x-axis points to the right. Solitons and antisolitons are drawn as
full lines, while breathers are drawn as dotted lines.

Turning now to ξ -dependent poles and zeros, we find zeros at

u = −ξ

λ
+

(2n + 1)π

2λ
(22)

where n = 0, 1, 2, . . . , for P +, and at the same rapidities but with ξ → −ξ for P −. There are
also poles in P + only at u = νn, with

νn = ξ

λ
− (2n + 1)π

2λ
. (23)

A soliton can only decay into an antisoliton and a breather, with a rapidity difference between
the two of π

2 + bπ
2λ

for breather b. Thus, by lemma 2, all of these poles must correspond to
bound states, as shown in figure 7(b). For reasons which will become clear in a moment, we
shall depart from the convention of [7] and, rather than labelling the state corresponding to
pole νn as βn, will label it according to topological charge and n as |1; n〉.

(a) (b) (c)

Figure 7. (a) ξ -independent pole. (b) Bound state. (c) Crossed process.
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Figure 8. Boundary bound-state bootstrap.

4.2. Solitonic excited state reflection factors

Using the boundary bootstrap equations given in [1], which come from considering figure 8,
solitonic reflection factors can be calculated for this first set of bound states. In our case, these
equations read

P b
|y〉(u) =

∑
c,d

P d
|x〉(u)Sab

cd (u − αy
ax)Sdc

ba (u + αy
ax) (24)

where a, b, c and d take the values + or − and α
y
ax is the (imaginary) rapidity of the pole at

which particle a binds to boundary state |x〉 to give state |y〉. The mass of state |y〉 (my) is
given by

my = mx + ms cos αy
ax. (25)

Taking x to be the ground state |0〉 and y to be one of the set of excited states |1; n〉, this
gives

P +
|1;n〉(u) = P +

|0〉(u) a(u − νn) a(u + νn)

P −
|1;n〉(u) = P −

|0〉(u) b(u − νn) b(u + νn) + P +
|0〉(u) c(u − νn) c(u + νn).

(26)

Note that P ±
|1;0〉(u) = P ∓

|0〉(u), where P ±(u) is P ±(u) under the transformation ξ →
π(λ + 1) − ξ . The reason for this is clear if we look back at figure 1; this transformation is
equivalent to reflecting the diagram in the horizontal axis, interchanging the ground and first
excited states.

Perhaps the neatest way to write the new reflection factors is

P ±
|1;n〉(u) = P ∓(u) a1

n(u) (27)

where

a1
n(u) = a(u + νn) a(u − νn)

a(u + ν0) a(u − ν0)
. (28)

The factor a1
n(u) simplifies to

a1
n(u) =

n∏
x=1

(ξ/λπ + 1/2λ − x/λ) (ξ/λπ − 1/2λ − x/λ)

(ξ/λπ + 1/2λ − x/λ + 1) (ξ/λπ − 1/2λ − x/λ + 1)
. (29)
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Figure 9. States can be created either by breathers or solitons.

Looking at the pole structure, we find that the functions P ±(u) have common simple poles
at ν0 and ν−N where N = 1, 2, 3, . . . . In addition, P +(u) has simple poles at u = wN ′ , where

wN ′ = π − ξ

λ
− π(2N ′ − 1)

2λ
= νN ′ (30)

and N ′ = 1, 2, 3, . . . , and simple zeros at −wN ′′ for appropriate values of N ′′. Finally, a1
n(u)

has simple poles at ν0 and νn, and double poles at νk , k = 1, 2, . . . , n − 1.
Before proceeding to a more rigorous discussion, we shall now digress to give an outline

of how the bootstrap might be expected to work. If one of these poles does correspond to
a new bound state, factorizability leads us to expect that moving the soliton and antisoliton
trajectories past each other (so that the antisoliton is incident on the boundary first) should also
create the same state. The most obvious explanation for this would be for the antisoliton to
bind to the boundary first, followed by the soliton, to form the state. From above, however,
only solitons can bind to the ground state, so we must look further.

The next most obvious way this could happen is via the soliton and antisoliton forming
a breather, either before or after the antisoliton has reflected from the boundary. The poles
required to allow the first process (of the form π + ξ

λ
− π(2m+1)

2λ
) are not present, whereas

those necessary for the second (of the form wm) are. Our candidate process therefore becomes
figure 9, where the soliton and antisoliton bind to form a breather, which then creates the state
in one step. It is quite difficult to imagine any further alternatives, so let us (for the moment)
take the existence of such a process as a necessary condition for a pole to be responsible for
the formation of a boundary state.

The consequence of this is that the wN poles are selected as the only possible candidates,
and it appears that new bound states can only be formed by antisolitons. Such states hence
have charge 0 (agreeing with the idea that they can also be formed from the ground state by
the action of a breather). In addition, it is also clear that only those wN such that wN < νn

can be considered, as, otherwise, the breather version of the process would see the breather
created heading away from the boundary, rather than towards it.

Designating such a new state as |0; n, N〉 and bootstrapping on it leads to

P −
|0;n,N〉(u) = P −

|1;n〉(u) a(u − wN ) a(u + wN )

P +
|0;n,N〉(u) = P +

|1;n〉(u) b(u − wN ) b(u + wN ) + P −
|1;n〉(u) c(u − wN ) c(u + wN ).

(31)
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Figure 10. Location of poles. (Note that, in this case, w2 can never participate in bound state
formation as it is above ν0.)

Substituting in (27) and taking advantage of the fact that wN = νN (so a(u±wN ) = a(u ± νN )),
this becomes
P −

|0;n,N〉(u) = a1
n(u)P +

|0〉(u) a(u − νN ) a(u + νN )

P +
|0;n,N〉(u) = a1

n(P −
|0〉(u) b(u − νN ) b(u + νN ) + P +

|0〉(u) c(u − νN ) c(u + νN ))
(32)

which (apart from an extra factor of a1
n(u)) is just the first bootstrap (26) under the

transformation ξ → π(λ + 1) − ξ and with solitons and antisolitons interchanged on the
left-hand side. Thus, the pole structure follows naturally from the above. This can also be
written as

P ±
|0;n,N〉(u) = P ±

|0〉(u) a1
n(u) a1

N (u). (33)

Repeating the factorization argument shows that now we should focus on νn′ poles such
that νn′ < wN . These are present now in the solitonic factor, though (due to the extra factor of
a1

n(u)) only for n′ > n. However, since any such state obeys νn > wN > νn′ in any case, this
restriction is not relevant. The resultant state must now have charge 0.

A pattern is emerging, and it is not hard to see how the process would continue. Starting
from the ground state, and taking the broadest guess (given our assumptions) for the spectrum,
states can be formed by alternating solitons and antisolitons, the solitons having rapidity νni

and the antisolitons having rapidity wNj
(for some sets n and N ). An schematic pole structure

is shown in figure 10, in terms of which the criterion for a state to be in the spectrum should
be that we begin with one of the νn and then, as we move along the index list, move down
the diagram, switching from side to side as we go. If we finish on a νm (indicating that the
most recent particle to bind was a soliton) the state has charge 1 while, if we finish on a wm

(meaning an antisoliton) the state has charge 0.
Annotating such a state by its topological charge, c, and the sets n and N as

|c; n1, N1, n2, N2, . . .〉 (noting νn1 > wN1 > νn2 > wN2 > · · ·), the solitonic reflection
factors should be

P ±
|c;n1,N1,...〉(u) = P ±

(c)(u) a1
n1

(u) a1
N1

(u) . . . (34)

with P ±
0 (u) = P ±

|0〉(u) and P ±
1 (u) = P ±

|0〉(u). From now on, however, it will be more convenient

to consider a single index list, and denote a1
m(u) as a0

m(u), giving

P ±
|c;n1,n2,...,nk〉(u) = P ±

(c)(u) a1
n1

(u) a0
n2

(u) a1
n3

(u) . . . ac
nk

(u) (35)
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where c is 1 if k is odd, and 0 if k is even. We will call this a level k boundary bound state. If

we choose the ground state mass to be ms sin2
(

ξ−π/2
2λ

)
, the mass of this state is

mn1,n2,... = ms sin2

(
ξ − π/2

2λ

)
+

∑
i odd

ms cos(νni
) +

∑
j even

ms cos(wnj
) (36)

= ms sin2

(
ξ − π/2

2λ

)
+

∑
i odd

ms cos

(
ξ

λ
− (2ni + 1)π

2λ

)
(37)

−
∑
j even

ms cos

(
ξ

λ
+

(2nj − 1)π

2λ

)
.

This choice is convenient in that, as ξ passes π/β, the masses of the ground and first excited
states interchange, in line with the idea that the states themselves swap at this point. An
important point to note is that, in deriving all of this, we have simply been considering the
soliton sector. However, we will see that allowing breather processes as well does not give rise
to any further states, merely additional ways to jump between states. The Dirichlet boundary
condition is also special in that either the soliton or the antisoliton can couple to a given
boundary, but not both, as might be expected generically.

Although we have built up the states by applying the solitons and antisolitons in this
alternating fashion, precisely how this happens in a given situation will of course depend on
the impact parameters of the incoming particles. In figure 9 we already gave an example of
the complicated way in which a process may be rearranged as these impact parameters vary,
and the particular choices that we have adopted are mainly motivated by a desire to assemble
the full spectrum in the simplest possible way.

4.3. Breather ground state reflection factors

We now return to the pole analysis, and examine the breather ground state reflection factors
(17). Again, the factor Rn

0 is boundary independent, and so all its poles should have an
explanation in terms of the bulk. There are (physical strip) poles at π

2 , lπ
2λ

, π
2 − nπ

2λ
, and double

poles at π
2 − lπ

2λ
, with l = 1, 2, . . . , n − 1. There are no zeros. The pole at π

2 is simply due to
the breather coupling perpendicularly to the boundary, while the poles at lπ

2λ
are explained by

figure 11. Next, the pole at π
2 − nπ

2λ
comes from a breather version of figure 7(a), B2n being

formed. Finally, the double poles at π
2 − lπ

2λ
are due to figure 12.

Moving on to the boundary-dependent part, there are poles at

u = ξ

λ
− π

2
± lπ

2λ
(38)

and zeros at

u = −ξ

λ
+

π

2
± lπ

2λ
u = ξ

λ
+

π

2
± lπ

2λ
(39)

where, for a breather n, l = n − 1, n − 3, . . . , l � 0.
The set of poles can be rewritten by noting that, for breather m, there is a simple pole of

the form 1
2 (νn −wN ) for all n, N � 0 and n, N ∈ Z such that m = n + N . This ties in with the

discussion in the previous section, since these are the rapidities predicted for the single-step
process which is equivalent to a soliton binding at an angle of νn followed by an antisoliton at
wN .
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Figure 11. Process involving a breather triangle. Figure 12. Process involving a double triangle of
breathers.

4.4. Breather excited state reflection factors

Following the discussion of the solitonic excited state reflection factors, we can introduce
corresponding breather reflection factors:

Rn
|c;n1,n2,...,nk〉(u) = Rn

(c)(u) a1;n
n1

(u) a0;n
n2

(u) a1
n3

(u) . . . ac;n
nk

(u) (40)

where Rn
0 (u) = Rn

|0〉(u) and Rn
1 (u) = Rn

|0〉(u). We have also defined

ac;m
n (u) = ac

n

(
u +

um

2

)
ac

n

(
u − um

2

)
(41)

or

a1;m
n (u) =

m∏
x=1

[ (
ξ/λπ + (1 − 2x − n)/2λ + 1

2

) (
ξ/λπ − (1 + 2x + n)/2λ + 1

2

)
(
ξ/λπ + (1 − 2x − n)/2λ − 1

2

) (
ξ/λπ − (1 + 2x + n)/2λ − 1

2

)

×
(
ξ/λπ + (1 − 2x + n)/2λ − 1

2

) (
ξ/λπ − (1 + 2x − n)/2λ − 1

2

)
(
ξ/λπ + (1 − 2x + n)/2λ + 1

2

) (
ξ/λπ − (1 + 2x − n)/2λ + 1

2

)
]

(42)

with a0;m
n (u) = a

1;m
n (u).

For Rm
|0〉(u), there are poles at

u = π

2
− ξ

λ
+

π

λ
± lπ

2λ

u = π

2
+

ξ

λ
− (l + 2)π

2λ

(43)

and zeros at

u = ξ

λ
− π

2
+

(l − 2)π

2λ
. (44)
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For the other factors, a1;m
n (u) has physical strip poles/zeros at

u = −ξ

λ
+

π

2
+

pπ

2λ
poles: p = 2n − m + 2x ± 1

zeros: p = −m + 2x ± 1

u = ξ

λ
− π

2
+

pπ

2λ
poles: p = m − 2x ± 1

zeros: p = −2n + m − 2x ± 1

u = ξ

λ
+

π

2
+

pπ

2λ
poles: p = −2n + m − 2x ± 1

zeros: p = m − 2x ± 1

(45)

while a0;m
n (u) has them at

u = −ξ

λ
+

3π

2
+

pπ

2λ
poles: p = −2N − m + 2x ± 1

zeros: —

u = −ξ

λ
+

π

2
+

pπ

2λ
poles: p = −m + 2x ± 1

zeros: p = −2N − m + 2x ± 1

u = ξ

λ
− π

2
+

pπ

2λ
poles: p = 2N + m − 2x ± 1

zeros: p = m − 2x ± 1

u = ξ

λ
+

π

2
+

pπ

2λ
poles: p = m − 2x ± 1

zeros: p = 2N + m − 2x ± 1.

(46)

These poles will be further discussed in section 6 below.

5. An example

To gain an idea of the full picture, and which processes are responsible for the remaining poles,
we will now look at one particular example in more detail. If we select ξ = 1.6π and λ = 2.5,
then we have the first two breathers in the spectrum, with the solitonic poles taking the form
νn = π(2.2−2n)

5 and wN = π(2.8−2N)

5 . Thus, for this case, only the poles at ν0, ν1 and w1 are on
the physical strip, and so figure 10 is simplified to figure 13. This is the simplest case which
requires a broader spectrum than that postulated in [7]. First, let us turn to the soliton sector.

5.1. Boundary ground state: soliton sector

As argued above, the soliton can bind to the boundary at all rapidities νn which are in the
physical strip, here just comprising ν0 and ν1. This introduces the states |1; 0〉 and |1; 1〉.

5.2. Boundary ground state: breather sector

The only breather poles are at ξ

λ
− π

2 + (m−1)π

2λ
for breather m. In addition, breather B2 has a

zero at − ξ

λ
+ π

2 + π
2λ

.
By lemma 1, the pole for B1 must correspond to a new bound state, the rapidity being less

than π
2λ

. From figure 9, it is clear that B1 creates the state which was labelled |δ0,1〉 in [7], and
which we have called |0; 0, 1〉.
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Figure 13. Location of poles in the example.

The pole for the second breather can be explained by figure B5, with the state |1; 0〉
being formed. The antisoliton is reflected from the boundary at a rapidity of ξ

λ
− π + 3π

2λ
—a

zero of the |1; 0〉 reflection factor—reducing the diagram to first order through the boundary
Coleman–Thun mechanism.

5.3. First-level excited states: soliton sector

From before, P +
|1;0〉 just has a simple pole at ν0, which can be explained by the crossed process

in figure 7(c), reducing the boundary to the ground state. For P +
|1;1〉, the pole at ν1 can be

explained in this way, while, for the double pole at ν0, figure B4 is required, the first breather
being formed while the boundary is reduced to the vacuum state.

For P −
|1;n〉(u), we have the additional job of explaining simple poles at wN , for all N such

that this pole is in the physical strip. Here, this is only w1. For |1; 0〉, this is appropriate for the
formation of |0; 0, 1〉 which, from the previous section, must be present. For |1; 1〉, however,
figure B3 is invoked, the second breather being created, and the boundary reduced to the vacuum
state. The breather is incident on the boundary at an angle of 1

2 (w1 − ν1) = π − ξ

λ
− π/2λ

which, looking at the above breather reflection factors, is a zero, ensuring the diagram is of
the correct order.

5.4. First-level excited states: breather sector

The pole structure of Rm
|1;0〉 can be found from Rm

|0〉, and is

B1: pole at
π

2
− ξ

λ
+

π

λ

B2: poles at
π

2
− ξ

λ
+

3π

2λ
,

π

2
− ξ

λ
+

π

2λ
.

(47)

By lemma 1, the second pole for B2 must correspond to a new bound state; by the previous
arguments, this is |1; 0, 1, 1〉. This state is not in the spectrum given in [7], but lemma 1 shows
that there is no way to avoid its introduction. Considerations such as this will open the door
to a much wider spectrum in the general case.

The B1 pole is suitable for the creation of |1; 1〉. The first pole for B2 can be explained
by figure B7, with the boundary being reduced to the ground state by emission of a soliton.
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For Rm
|1;1〉, the above poles are supplemented by additional poles from b1

m,1(u) to give the
poles shown in table 1.

Table 1. Breather pole structure for |1; 1〉. Entries are the values of p for which there is a pole in
the location given in the column heading. The power of the entry gives the order of the pole, so
e.g. 32 indicates a double pole when p = 3. There are no physical strip zeros for either breather.

− ξ
λ

+ π
2 + pπ

2λ
ξ
λ

− π
2 + pπ

2λ
ξ
λ

+ π
2 + pπ

2λ

B1 2 0 —
B2 32 1 −5

The pole at ξ

λ
+ π

2 − 5π
2λ

can be explained by figure B8, with the boundary being reduced
to the ground state by emission of a soliton. The pole at ξ

λ
− π

2 for B1 can be allocated to
the creation of |1; 0, 1, 1〉, while the pole at ξ

λ
− π

2 + π
2λ

for B2 is due to figure B9, where the
boundary emits B1, being reduced to |1; 0〉.

The pole at − ξ

λ
+ π

2 + 2π
2λ

for B1 is responsible for this reduction to |1; 0〉, while the double
pole for B2 comes from an all-breather version of figure B6, the boundary being reduced in
the same way.

5.5. Second-level excited states: soliton sector

For P −
|0;0,1〉(u), the only poles are simple, at ν0 and w1. The pole at w1 can be explained by

figure 7(c) while, for ν0, we need figure B2. The second breather is emitted by the boundary,
reducing it to the ground state, while a soliton is incident on the boundary at a rapidity w1.
For the ground state, this is neither a pole nor a zero, but the diagram contains a solitonic loop
which can either be drawn to leave a soliton or an antisoliton incident on the boundary. Adding
the contributions of these two diagrams gives an additional zero.

For P +
|0;0,1〉(u), we have additional poles at all ν, i.e. a simple pole at ν1, with ν0 becoming

a double pole. By lemma 1, ν1 must correspond to the creation of a new bound state, namely
|1; 0, 1, 1〉, while, for ν0, figure B3 should be considered. Again, the second breather is created,
the boundary is reduced to the ground state, and the breather is incident on the boundary at a
rapidity of 1

2 (ν0 − w1) = ξ/λ − π/2—a zero of the reflection factor.

5.6. Second-level excited states: breather sector

For |0; 0, 1〉, we have the pole structure given in table 2.

Table 2. Breather pole structure for |0; 0, 1〉.
− ξ

λ
+ 3π

2 + pπ
2λ

− ξ
λ

+ π
2 + pπ

2λ
ξ
λ

− π
2 + pπ

2λ

B1 −2 2 0, 2
B2 −3 3 12

The poles at − ξ

λ
+ 3π

2 + pπ

2λ
are due to figure B8, while the poles in the second column are

due to figure B9. For all these, the boundary is reduced to |1; 0〉. The pole at ξ

λ
− π

2 + (m−1)π

2λ
for

Bm (m = 2) is due to figure B12, while for m = 1 it is due to a breather version of figure 7(c).
The pole at ξ

λ
− π

2 + 2π
2λ

for B1 is due to figure B7.
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5.7. Third-level excited states: soliton sector

The only third-level excited state is |1; 0, 1, 1〉. For P +
|1;0,1,1〉, there are simple poles at w1, ν0

and ν1. Again, the pole at w1 comes from the crossed process figure 7(c). For ν1, figure 7(c)
suffices while, for ν0, figure B4 is required, the boundary being reduced to |0; 0, 1〉, while the
first breather is incident on the boundary at π

2 − ξ

λ
+ π

λ
, another zero.

5.8. Third-level excited states: breather sector

Here, we find the poles given in table 3.

Table 3. Breather pole structure for |1; 0, 1, 1〉.
− ξ

λ
+ 3π

2 + pπ
2λ

− ξ
λ

+ π
2 + pπ

2λ
ξ
λ

− π
2 + pπ

2λ
ξ
λ

+ π
2 + pπ

2λ

B1 −2 22, 4 0, 2 —
B2 −3 1, 33 12 −5

Comparing this with the structure given above for |1; 1〉, it can easily be seen that, whenever
the two both have a pole at the same rapidity, essentially the same explanation can be used. For
the remaining poles, − ξ

λ
+ 3π

2 + pπ

2λ
can be explained by figure B9, the boundary being reduced

to |1; 0〉, while that at − ξ

λ
+ π

2 + π/2λ for B2 is due to figure 7(c), reducing the boundary
to |1; 0〉, and that at ξ

λ
− π

2 + 2π
2λ

for B1 is due to an all-breather version of figure B7, again
reducing the boundary to |1; 0〉.

5.9. Summary

The above has shown that, by introducing only the states which are required by lemmas 1 and 2,
the complete pole structure can be explained. Below, we shall find that this is a general feature.
In addition, the spectrum of states is broader than that introduced in [7] (containing, in addition
to their states, |1; 0, 1, 1〉). It should be noted that the mass of this extra state corresponds to
m1,1 of [7], the mass of a boundary Bethe ansatz (1, 1)-string whose apparent absence from
the bootstrap spectrum was described in that paper as ‘confusing’. This does at least show
that the Bethe ansatz results of [7] are not incompatible with the bootstrap. However, in more
general cases it turns out that the bootstrap predicts yet further states, beyond those identified
in the boundary Bethe ansatz calculations of [7], so a full reconciliation of the Bethe ansatz
and bootstrap approaches remains an open problem.

6. The general case

From the above, we might be tempted to guess that the boundary state labelled by
|c; n1, n2, n3, . . . , nm〉 exists iff c is 0 or 1 and n1, n2, n3, . . . are chosen such that π/2 >

νn1 > wn2 > νn3 > · · · > 0. This turns out to be correct, and will be proved in two stages.
Firstly, we need to show that all of these states must be present, before going on to show that,
given this, all other poles can be explained without invoking further boundary states.

6.1. The minimal spectrum

The argument proceeds as follows: starting with the knowledge that the vacuum state |0〉 and
all appropriate states |1; n1〉 are in the spectrum, we use breather poles to construct all the other
postulated states.



9082 P Mattsson and P Dorey

These poles are of the form 1
2 (wN − νn) for breather n + N incident on a charge 0 state (or

1
2 (νn − wN ) for a charge 1 state). If νn − wN < π

λ
, lemma 1 shows that they must correspond

either to the formation of a new state, or the crossed process. From figure 9, this corresponds
either to adding indices n and N if they are absent or—if they are already present—removing
them. (Note that any other option would give rise to a state with a mass outside the scheme
given by (38), and therefore outside our postulated spectrum.) The condition νn − wN < π

λ
is

always satisfied if νn > wN and νn and wN are as close together as possible, i.e. if |0; n, N〉
exists, but |0; n, N − 1〉 does not.

The only subtlety in this argument arises when considering the topmost breather. If
n + N = nmax, lemma 1 on its own is not strong enough to require the presence of the state we
need, and we must invoke the stronger version introduced at the end of section 3. This makes
use the idea that there must be a corresponding two-stage solitonic route to the same state, i.e.
a soliton with rapidity νn followed by an antisoliton with rapidity wN . Considering these two
processes instead, the stronger lemma shows that both form bound states, as νn and wN must
be the lowest poles of their type—and so have a rapidity of less than π

λ
—for n + N to equal

nmax. This shows that the state exists, and hence that the breather pole is due to its formation.
Since the arguments for the two sectors are analogous, let us focus on the charge 0 sector

here. The challenge is to create any state |0; x〉 (for some set of indices x = (n1, n2, . . . , n2k))
from the ground state using just these poles. As a first step, consider creating |0; n1, n2〉. If
νn1 and wn2 are as close together as possible, we simply make use of the pole at 1

2 (wn2 − νn1).
Otherwise, introduce the set m1, m2, . . . , mt such that νn1 > wm1 > νm2 > wm3 >

· · · > νmt
> wn2 , with each successive rapidity as close to the previous one as possible.

Now, we can successively create |0; x, n1, m1〉, then |0; x, n1, m1, m2, m3〉 and so on, up to
|0; x, n1, m1, m2, m3, . . . , mt , n2〉.

By now invoking the crossed process, a suitable breather can be used to remove the
indices m1, m2, followed by m3, m4 and so on, until all the m indices have been removed to
leave |0; x, n1, n2〉.

Repeating this procedure allows |0; n1, n2, n3, n4〉 to be created, and hence |0; x〉. Note
that this allows any state in our allowed spectrum to be created, but no others, as the condition
νn1 > wn2 > · · · is imposed by the existence of the necessary breather poles. Charge 1 states
can be created analogously by starting from a suitable state |1; n1〉.

One remaining point is to check that all the necessary breather poles do indeed exist.
However, starting from (40), they occur in the Rn

(c)(u) factor, and it is straightforward to check
that they are never modified by the other a factors.

6.2. Reflection factors for the minimal spectrum

The boundary state can be changed by the solitonic processes given in table 4.

Table 4. Solitonic processes which change the boundary state.

Initial state Particle Rapidity Final state

|0; n1, . . . , n2k〉 Soliton νn |1; n1, . . . , n2k, n〉
|1; n1, . . . , n2k−1〉 Antisoliton wN |0; n1, . . . , n2k−1, N〉

The breather sector is more complex, as indices can be added or removed from any point in
the list, and not just at the end, as for solitons. In addition, processes exist which simply adjust
the value of one of the indices, rather than increasing the number of indices. For breather m,
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Table 5. Breather processes which change the boundary state.

Initial state Rapidity Final state

|0/1; . . . n2x , n2x+1 . . .〉 1
2 (νn − wN ), n + N = m |0/1; . . . n2x , n, N, n2x+1 . . .〉

|0/1; . . . n2x−1, n2x . . .〉 1
2 (wN − νn), n + N = m |0/1; . . . n2x−1, N, n, n2x . . .〉

|0/1; . . . n2x . . .〉 1
2 (ν−n2x

− wn2x +m) |0/1; . . . n2x + m . . .〉
|0/1; . . . n2x−1 . . .〉 1

2 (w−n2x−1 − wn2x−1+m) |0/1; . . . n2x−1 + m . . .〉

these are given in table 5. This should be read as implying that any index can have its value
raised, and that a pair of indices can be inserted at any point in the list, including before the
first index and after the last (providing the resultant state is allowed). Both of these tables have
been derived on the basis that, whenever assuming that a pole corresponds to a bound state
leads to a state with the same mass and topological charge as one in our minimal spectrum, the
assumption is taken to be correct. As with our earlier assumption (that, if a pole has another
possible explanation, it is not taken as forming a bound state), this is intuitively reasonable but
not necessarily rigorous. It does, however, lead to consistent results, and there is no conflict
between the two assumptions: we have been unable to find any alternative explanation for any
of the poles listed above.

It is vital for what follows that, for all the above processes, there is very little dependence
on the existing boundary state. For the solitons, the topological charge of the state and the value
of the last index in the list are all that matter. Any two states which have the same topological
charge and last index can undergo processes at the same rapidities to add an index. Similarly,
for the breathers, provided either the relevant two indices can be added at some point in the
list to create an allowed state, or that the index to be adjusted is present in the list, the other
characteristics of the state are irrelevant.

6.3. Solitonic pole structure

This turns out to be relatively straightforward. All poles are either of the form νn or wN .
Looking at a charge 0 state with 2k indices, and labelling this as |0; x〉 = |0; n1, n2, . . . , n2k〉,
we find the results shown in table 6 for P −

|0;x〉(u).

Table 6. Pole structure for P −
|0;x〉(u). An entry of, for example, w1 . . . wn2−1 indicates that there

is a pole of order 2k at w1, w2, w3, . . . , wn2−1.

Pole Order Pole

w1 . . . wn2−1 2k ν1 . . . νn1−1

wn2 2k − 1 νn1

wn2+1 . . . wn4−1 2k − 2 νn1+1 . . . νn3−1

wn4 2k − 3 νn3

.

.

.
.
.
.

.

.

.

wn2k−2+1 . . . wn2k−1 2 νn2k−3+1 . . . νn2k−1−1

wn2k
1 νn2k−1

These poles come from the a factors so, for P +, there is an additional pole at all ν. For
the charge 1 states, the picture is very similar, and, considering P + first, we find the pattern
given in table 7 for a state with 2k − 1 indices. In addition, there are poles at all w for P −.
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Table 7. Pole structure for P +
|1;x〉(u).

Pole Order Pole

— 1 ν0, ν−1, . . .

— 2k ν1 . . . νn1−1

— 2k − 1 νn1

w1 . . . wn2−1 2k − 2 νn1+1 . . . νn3−1

wn2 2k − 3 νn3

.

.

.
.
.
.

.

.

.

wn2k−4+1 . . . wn2k−2−1 2 νn2k−3+1 . . . νn2k−1−1

wn2k−2 1 νn2k−1

(For the charge 0 case, there are poles at wx for x � 0, but none of these are in the physical
strip.)

An important point to note is that, comparing the general level 2k state
|0; n1, n2, . . . , n2k−1, n2k〉 with the level 2 state |0; n2k−1, n2k〉, we find no additional poles,
though the order of some poles has increased. In the example above, all level 2 states were
explained by diagrams where the boundary was reduced either to the vacuum by emission of a
breather, or to a first-level excited state by emission of an antisoliton. The same processes turn
out to be present for any level 2k state to be reduced to a level 2k − 1 or 2k − 2 state. Thus,
we might imagine explaining the poles in the level 2k reflection factor via similar processes to
those which explained them in the level 2 factor. At times, however—as we shall see—parts
of these processes will need to be replaced by more complex subdiagrams to allow for the fact
that the boundary is in a higher excited state, explaining the differences in the orders of the
poles. Considering the level 2 processes so far introduced as ‘building blocks’, this can be
considered as an iterative process: level 4 states can be explained by replacing parts of level
2 processes with building blocks, while level 6 states can be explained by similarly replacing
parts of level 4 processes with building blocks, and so on. A generic process of the type we
will examine can therefore be viewed as a cascade of building blocks, each appearing as a
subdiagram of the one before it.

A similar argument applies to level 2k + 1 states and level 3 states, drawing the same
diagrams with all rapidities transformed via ξ → π(λ + 1) − ξ . We will concentrate on the
charge 0 sector below, and consider a generic level 2k state.

For poles of the form νn, consider figure B13. The boundary decays to the state
|0; n1, n2, . . . , n2k−2〉 by emission of breather n2k +n2k−1 at a rapidity of 1

2 (νn2k−1 −wn2k
). This

then decays into breather n2k−1−n heading towards the boundary at a rapidity of 1
2 (w−n2k−1 −νn)

and breather n2k + n heading away from the boundary at a rapidity of νn − (
π
2 − (n2k+n)π

2λ

)
. This

then decays to give the outgoing particle and one heading towards the boundary at a rapidity of
wn2k

. For n < n2k−1, it is straightforward to check that all these rapidities are within suitable
bounds.

This diagram is naively third order. However, breather n2k−1−n, which is drawn as simply
reflecting off the boundary, in fact has a pole, meaning that the diagram should be treated as
schematic and the appropriate diagram from the next section inserted instead. In addition, as
noted in the discussion of the example, the soliton loop contributes a zero for an incoming
antisoliton through the Coleman–Thun mechanism. When this is taken into account, we obtain
the correct result.

For ν2k−1, the slightly simpler figure B2 suffices. The remaining ν poles are only present in
the soliton reflection factor, and can be explained by figure B3, with the boundary decaying by
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emitting an antisoliton at wn2k
, which then interacts with the incoming soliton to give breather

n + n2k , heading towards the boundary at a rapidity of 1
2 (νn − wn2k

). Looking ahead again, the
interaction of this breather with the boundary contributes the required zero. For νn < wn2k

,
this diagram fails, the breather being created heading away from the boundary; this is the point
when the pole is to be considered as creating the bound state |1; n1, . . . , n2k, n〉.

For the wN poles, the story is very similar, this time being based on figure B4 (requiring
a suitable pole/zero for BN−n2k

on state |1; n1, . . . , n2k−1〉 at ξ

λ
− π

2 + π(N+n2k−1)

2λ
) for N < n2k

and figure 7(c) for n2k . As noted above, all charge 1 state poles can be explained by the same
mechanisms, with the rapidities transformed according to ξ → π(λ + 1) − ξ .

6.4. Breather pole structure

This is considerably more complicated. However, with a bit of work it turns out that, for
breather n on the state |0; n1, n2, . . . , n2k〉, the pole structure is as given in table 8.

Table 8. Breather pole structure for a generic charge 0 state. The variable x takes integer and
half-integer values within the allowed ranges. An entry in the third column represents a pole of
that order if it is positive, and a zero of appropriate order if it is negative. (Thus an entry of +1 is a
first-order pole, and an entry of −1 is a first-order zero.) Also, for convenience, y is 1 if x (or |x|)
attains the lower limit, −1 if n + x (or n − |x|) attains the lower limit, and zero otherwise, while i

is 1 if x is integer, and 0 otherwise.

Pole Range Pole/zero order

ξ

λ
− π

2
+

π(n + 2x − 1)

2λ
n2q < x < n2q+2 2(q ′ − q) + y

n2q ′ < n + x < n2q ′+2

x < 0, n2q−1 < |x| < n2q+1 2(q ′ − q) + y + i

n2q ′ < n − |x| < n2q ′+2

− ξ

λ
+

π

2
+

π(n + 2x + 1)

2λ
n2q−1 < x < n2q+1 2(q ′ − q) + y

n2q ′−1 < n + x < n2q ′+1

x < 0, n2q < |x| < n2q+2, 2(q ′ − q) − i + y

n2q ′−1 < n − |x| < n2q ′+1

x < −n, n2q < |x| < n2q+2 2(q ′ − q)

n2q ′ < |x| − n < n2q ′+2

ξ

λ
+

π

2
+

π(n + 2x − 1)

2λ
As

ξ

λ
− π

2
+

π(n + 2x + 1)

2λ
with poles ↔ zeros

− ξ

λ
+

3π

2
+

π(n + 2x + 1)

2λ
As − ξ

λ
+

π

2
+

π(n + 2x − 1)

2λ
with poles ↔ zeros

In explaining all this, we can begin with the diagrams found previously. For the first line,
consider an all-breather version of figure B5, where the breather decay is chosen to produce
breather n+x −n2q ′ on the left, which then binds to the boundary to raise index n2q ′ to n+x. In
some cases, this is not possible, the appropriate state not being in the spectrum, but, then, we
can consider an all-breather version of figure B10, where the boundary decays so as to remove
the indices n2q ′ and n2q ′+1, with the same initial breather decay, and the additional breather
reflecting from the boundary contributes a zero. This diagram becomes possible just as the
other fails. In either case, the other breather from the initial decay (which is drawn as simply
reflecting from the boundary), is breather y = n2q ′ − x at rapidity ξ

λ
− π

2 + π(y+2x−1)

2λ
. This has

a pole of order two less than the initial breather. If this order is less than or equal to zero, the
diagram stands as drawn while, otherwise, the simple reflection from the boundary should be
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replaced by a repeat of this argument, iterating until the result is less than or equal to zero. For
the next line, precisely the same argument can be used.

The next three lines can be explained by a similar argument, based on either increasing
the value of the index n2q ′−1 or removing indices n2q ′−1 and n2q ′ .

For ξ

λ
+ π

2 + π(n+2x−1)

2λ
, we invoke a similar process. This time, however, the outer legs

have rapidity ν−(n+x) (where −(n + x) is actually a positive number if the initial pole is to be
in the physical strip), and so we need to substitute in the explanation of soliton poles of this
form from before, leading, in simple cases, to figure B9.

Finally, for 3π
2 − ξ

λ
+ π(n+2x+1)

2λ
, we begin with figure B8. This time, the reflection factor

for the central soliton always provides a zero, while the outer soliton has rapidity wn+x . If
n + x = n2k , the diagram is as drawn while, otherwise, we need to replace the two outer
antisoliton legs with the explanation of the appropriate pole in the antisoliton factor. The first
iteration of this is shown in figure B10.

7. Conclusions

We now summarize our results. We have found that the spectrum of boundary bound states of
the sine–Gordon model with Dirichlet boundary conditions can be characterized in terms of
two ‘sectors’, having topological charges βϕ0

2π
and 1 − βϕ0

2π
(which we labelled as ‘0’ and ‘1’,

respectively). A boundary state can be described in an index notation as |c; n1, n2, . . . , nk〉 for
topological charge c, with c = 0 for k even and c = 1 for k odd. Such a state can be created by
a succession of alternating solitons and antisolitons, beginning with a soliton. The necessary
soliton rapidities are of the form,

νn = ξ

λ
− π(2n + 1)

2λ
(48)

while those for the antisolitons are

wm = π − ξ

λ
− π(2m − 1)

2λ
. (49)

These are interchanged by the transform ξ → π(λ + 1) − ξ . Any such state can be formed,
provided the rapidities involved are monotonically decreasing, i.e. νn1 > wn2 > νn3 > · · ·,
and its mass is given by

mn1,n2,... = ms sin2

(
ξ − π/2

2λ

)
+

∑
i odd

ms cos(νni
) +

∑
j even

ms cos(wnj
) (50)

= ms sin2

(
ξ − π/2

2λ

)
+

∑
i odd

ms cos

(
ξ

λ
− (2ni + 1)π

2λ

)

−
∑
j even

ms cos

(
ξ

λ
+

(2nj − 1)π

2λ

)
. (51)

This spectrum is considerably larger than that suggested in [7], though all the states introduced
are required to satisfy our lemmas. It is worth pointing out that a second part of the analysis
of [7] involved an examination of the (boundary) Bethe ansatz for a lattice regularization of the
model. Some of the masses which emerged in the course of that study—those of the (n, N)-
strings—were outside the spectrum proposed in [7], but are now included as the masses of the
states |1; 0, n, N〉. It remains to be seen, however, whether the other masses in our spectrum
can be recovered in the Bethe ansatz approach.
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Figure 14. Boundary bound state spectrum size. The number of states present increases as ν-type
and w-type poles enter the physical strip, but changes also occur as the two sets of poles pass
through coincidence: moving in the direction of increasing λ, the topmost relevant w-type pole
passes ν0 and ceases to be relevant, reducing the spectrum. (Notation x, y implies F (x) charge 0
states and F (y) charge 1 states.)

The number of states present in the spectrum clearly depends on the boundary parameters,
as illustrated in figure 14. It is convenient to express these in terms of Fibonacci numbers,
F (x), where F (x) = 1, 1, 2, 3, 5, . . . for x = 0, 1, 2, . . . . If there are n ν-type poles, and m

relevant† w-type poles, there are, in general, F (2n) charge 1 states and F (2m + 1) charge 0
states. Explicitly, these are given by

n =
[

ξ

π
− 1

2

]
+ 1

m =
[

λ

2
− ξ

π
+

1

2

]
−

[
λ − ξ

π
+

1

2

] (52)

where the square brackets denote the integer part of the number. This changes when the two
sets of poles coincide, in which case there are 2n−1 states in each sector.

Finally, we note that the general method used to derive the spectrum, via the simple
geometrical argument leading to the two lemmas given in section 3, which can be applied
equally well to any two-dimensional model. Using this to deduce the existence of as many
states as possible led—in our case—to the full spectrum. In other cases, we may not be so
fortunate, but, using it as a starting point, it should make the derivation of the full spectrum a
finite (though possibly lengthy) task.

† A w-type pole with a rapidity greater than ν0 can never be involved in forming a bound state, and so is not ‘relevant’
here.
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Appendix A. Infinite products of gamma functions

The products which arise in the course of this work are of the form

P (u) =
∞∏

l=1

[
!(kl + a − xu)!(kl + b − xu)

!(kl + c − xu)!(kl + d − xu)

/
(u → −u)

]
(A1)

Rather than examine this product directly, we take logs and use the standard formula

ln !(z) = z ln(z) − z − 1

2
ln(z) + ln(

√
2) +

1

12z
+ O(z−3). (A2)

Assuming that the sum over l and the expansion in z can be exchanged, potential divergences
arise from terms of the form

∑∞
l=1

a
ln with a 
= 0 and n < 2. To begin with, we will consider

the terms arising from the block of four terms explicitly shown.
Firstly, there is a contribution of

∑∞
l=1 a + b − c − d from the z terms, which can be set to

zero by demanding a + b = c + d . For the 1/12z terms, the overall contribution from the four
terms is

∞∑
l=1

1

12

(
a − c

(kl + a − xu)(kl + c − xu)
+

b − d

(kl + b − xu)(kl + d − xu)

)
(A3)

which can be seen, for a + b = c + d , to be of the form 1/l2 and hence convergent.
A similar argument applies to the − 1

2 ln(z) terms, showing they also provide a convergent
contribution. This breaks down when considering the z ln(z) terms, however, and their
contribution formally reduces to

∞∑
l=1

(cd − ab

kl
+ O(l−2)

)
(A4)

which is divergent unless a = c or b = c, both of which are trivial cases. However, repeating
this argument on the other block (with u → −u) can be seen to yield the same result, allowing
the two divergent terms to cancel, and leaving a product which is convergent overall.

For comparison with other results, it is useful to write P (u) in other ways. Firstly, it can
be written in terms of Barnes’ diperiodic sine functions using the expansion as given in [11]:

S2(x|ω1, ω2) = exp

[
(ω1 + ω2 − 2x) (γ + log(2π) + 2 log (ω1/ω2))

2ω1

]
! ((ω1 + ω2 − x)/ω1)

! (x/ω1)

×
∞∏

n=1

[
! ((ω1 + ω2 − x + nω2)/ω1)

! ((x + nω2)/ω1)

× exp

[
−ω1 + ω2 − 2x

2nω1

] (
nω1

ω2

)−(ω1+ω2−2x)/ω1
]

(A5)
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where γ denotes the Euler constant. For blocks of the form we are interested in, this simplifies
to
S2(x1|ω1, ω2)S2(x2|ω1, ω2)

S2(x3|ω1, ω2)S2(x4|ω1, ω2)

=
∞∏

n=1

[ {
! ((ω1 + nω2)/ω1 − x1/ω1)

! ((n − 1)ω2/ω1 + x1/ω1)

! ((ω1 + nω2)/ω1 − x2/ω1)

! ((n − 1)ω2/ω1 + x2/ω1)

}

/
(x1,2 → x3,4)

]
(A6)

provided x1 + x2 = x3 + x4. Comparing with (A1) we have

P (u) = S2(ω1(1 − a + xu)|ω1, ω1k)S2(ω1(1 − b + xu)|ω1, ω1k)

S2(ω1(1 − c + xu)|ω1, ω1k)S2(ω1(1 − d + xu)|ω1, ω1k)
(A7)

where w1 is arbitrary. In section 2 we took ω1 = x−1 for simplicity. The identity

S2(ω1 + ω2 − x|ω1, ω2) = 1

S2(x|ω1, ω2)
(A8)

was also used.
These products can also be written in an integral form, through

log !(ζ ) =
∫ ∞

0

dx

x
e−x

[
ζ − 1 +

e−(ζ−1)x − 1

1 − e−x

]
Re ζ > 0. (A9)

Since, for the expressions we consider, not all the !-functions have arguments with a positive
real part, it is not possible to give a general formula for P solely in these terms. Instead, we
give expressions for the reflection factors. To simplify matters, define

I 1(u) = 2λ

π

∫ +∞

−∞
dx cosh

(
2λux

π

) [
sinh (λ − 2ξ/π) x

2 sinh x cosh λx

]
(A10)

I 2(u) = 2λ

π

∫ +∞

−∞
dx cosh

(
2λux

π

) [
sinh (2ξ/π − 2n∗ − 2) x

sinh x

]
(A11)

I 3
n (u) = −2λ

π

∫ +∞

−∞
dx cosh

(
2λux

π

) [
2 cosh x sinh (λ + 1 + 2n − 2ξ/π) x

2 sinh x cosh λx

]
(A12)

I 4
n (u) = −2λ

π

∫ +∞

−∞
dx cosh

(
2λux

π

) [
2 cosh x sinh (2ξ/π + 2n − λ − 1) x

2 sinh x cosh λx

]
(A13)

(where I 3
n (u) and I 4

n (u) are related to each other through ξ → π(λ + 1) − ξ ). The constant n∗
is the number of ν-type poles in the physical strip, which we recall can be written as

n∗ =
[

ξ

π
− 1

2

]
. (A14)

The reflection factors can then be written as

− d

du
log

[
P +

|c;x〉(u)

R0(u)

]
= I 1(u) + cI 2(u) +

∑
i odd

I 3
ni

(u) +
∑
j even

I 4
nj

(u) (A15)

− d

du
log

[
P −

|c;x〉(u)

R0(u)

]
= I 1(u) − (1 − c)I 2(u) +

∑
i odd

I 3
ni

(u) +
∑
j even

I 4
nj

(u) (A16)
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for topological charge c and x = (n1, n2, . . . , n2k+c). These factors were given in [7] for the
first two levels of excited states (the extent of the spectrum they found); the above is simply a
generalization of this to the whole spectrum.

Appendix B. On-shell diagrams

In this appendix we collect together some of the on-shell diagrams used in the main body of
the paper. All boundaries are initially in the state |n1, n2, . . . , n2k〉, where k can be any integer,
and we have suppressed the topological charge index (which is zero). Analogous processes
for charge 1 states can be found by applying the transformation ξ → π(λ + 1) − ξ to all the
rapidities shown.

In addition, where the boundary is shown decaying through emission of a breather, only
the process where this removes the last two indices is given. Similar processes always exist
to remove any other adjacent pair of indices, or to simply modify an index; see section 6.2 for
the appropriate breather boundary vertices.
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Figure B1. Incoming soliton, breather boundary decay. Figure B2. As in figure B1 with incoming soliton
crossed.
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Figure B3. Incoming soliton, soliton boundary decay. Figure B4. As in figure B3 with incoming soliton
crossed.
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Figure B5. Incoming breather, soliton bound
state.

Figure B6. As in figure B5 with outgoing soliton crossed.
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Figure B7. Incoming breather, soliton boundary
decay.

Figure B8. As in figure B7 with incoming breather crossed.
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Figure B10. As in figure B8, outer legs replaced by figure B2.
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Figure B11. As in figure B6, outer legs replaced by figure B2
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Figure B12. As in figure B5, outer legs replaced by
figure B3.

Figure B13. As in figure B2, outer legs replaced by
all-breather version.
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